都在追 AI 热潮,却没人提:数据治理才是 AI 时代的 “隐形基石”

2025-09-19 13:32 浏览量:45


“用 AI 问数,业务人员不用学 SQL 也能查数据!”“几分钟出分析报告,决策效率翻三倍!”—— 几年前,当 AI 问数的推销话术第一次出现在企业会议室时,老板们眼中满是期待,仿佛找到了破解 “用数难” 的金钥匙。可如今,同样的场景再上演,得到的往往是高管们敷衍的点头,会后便石沉大海。​

 


这像极了当初 “数据治理” 从热捧到遇冷的轨迹。为什么曾经被寄予厚望的 AI 问数,也渐渐提不起老板们的兴趣?是技术本身不行,还是企业对它的期待与现实脱了节?我们不妨顺着当初分析 “数据治理遇冷” 的思路,看看 AI 问数背后的困境与转机。​


01 听腻的 “便利” 故事,撑不起真实需求​


“不用技术人员帮忙,自己就能查数据”“不用等报表,实时出结果”—— 这些关于 AI 问数的 “便利” 故事,和当年 “数据治理是数字化基石” 的说法如出一辙,听多了便成了陈词滥调。​
更让老板们失望的是,不少企业花了钱引入 AI 问数系统后,发现现实远不如宣传:业务人员确实不用写 SQL 了,但 “怎么问才能得到准确结果” 又成了新难题 —— 问得太笼统,系统答非所问;问得太具体,又和写代码一样繁琐;好不容易查到数据,要么格式混乱看不懂,要么和其他部门的数据对不上,最后还是得找技术人员兜底。​
就像当年企业花大价钱做数据治理,结果数据依旧杂乱一样,AI 问数的 “便利” 停留在了口头上,没解决企业真正的用数痛点。老板们听多了 “画饼”,自然对这套说辞没了兴趣。​


02 算不清的价值账,成了立项拦路虎​


和数据治理面临的 “ROI 迷雾” 一样,AI 问数也躲不开 “价值量化” 的难题。老板们愿意花钱,但得知道花出去的钱能带来什么具体回报。​
可实际情况是,企业引入 AI 问数后,很难说清它到底创造了多少价值:财务依旧用 Excel 做核算,因为 AI 问数导出的数据还得手动调整;运营分析指标,还是会因为部门口径不一产生争议,AI 问数没能统一标准;原本期待它能加速决策,结果业务人员还是得反复确认数据准确性,决策周期没缩短多少。​
在 “降本增效” 成了企业经营核心目标的当下,AI 问数拿不出清晰的价值清单 —— 比如 “每月减少多少技术支持工时”“帮助业务部门多创造多少营收”,老板们自然不愿轻易点头立项,预算申请也屡屡卡在 “说不清楚价值” 这一关。​


03 新技术分流注意力,AI 问数失了 “新鲜感”​


就像当年 AI 兴起让数据治理失宠一样,如今生成式 AI、AI Agent 等新技术的火热,也分走了老板们对 AI 问数的关注。​
相比 AI 问数 “只能查数据、做基础分析” 的定位,新技术的故事显然更吸引人:“AI 能自动写文案、做设计,直接减少人力成本”“AI Agent 能自动处理流程化工作,效率翻几倍”—— 这些说法听起来更 “颠覆性”,也更能让老板们看到 “快速见效” 的可能。


而 AI 问数呢?既没有数据治理 “数字化基石” 的宏大定位,也没有新技术 “颠覆业务” 的吸睛亮点,卡在中间成了 “尴尬的存在”。老板们的注意力被更前沿的技术吸引,AI 问数自然慢慢淡出了优先选项。


04 不是 AI 问数没用,是没找对价值打开方式​


看到这里,或许有人会问:难道 AI 问数对企业来说,真的没价值了吗?其实不然。就像数据治理在 AI 时代依旧重要一样,AI 问数的价值,只是需要换一种更贴近企业需求的方式来呈现。​


企业用数的核心痛点,从来不是 “不会写 SQL”,而是 “数据用得不顺畅”—— 数据看不懂、查不准、用不上。AI 问数要做的,不是单纯替代技术人员写查询语句,而是成为 “打通数据到业务的桥梁”。​


比如,通过 “元数据增强” 给数据加 “说明书”,让业务人员能看懂 “yjje” 是 “应收账款金额”,知道 “销售额” 和 “订单量” 的关联逻辑,解决 “数据看不懂” 的问题;通过 “用数知识库” 收集常见问题,比如 “每月销售总额怎么算”“地区生产总值包含哪些范围”,让重复查询不用再反复计算,同时根据用户反馈不断优化,解决 “查不准” 的问题;再通过 “图表可视化”,把查询结果变成饼图、折线图,配上通俗的文字解读,让业务人员拿到数据就能直接用在汇报、决策里,解决 “用不上” 的问题。​


更关键的是,要建立 “兜底机制”—— 万一 AI 问数给出的结果不准,有人工介入排查,把正确结果反馈给用户,同时更新知识库,避免下次再出错。这样一套组合拳下来,AI 问数才能真正解决 “数据用得不顺畅” 的痛点,而不是停留在 “不用写 SQL” 的表面便利上。​


05 结语:回归业务本质,才是 AI 问数的出路​


其实,不管是数据治理,还是 AI 问数,抑或是当下火热的新技术,企业选择它们的核心逻辑,永远是 “能否解决业务问题”。AI 问数之所以遇冷,不是技术不行,而是之前的价值主张偏离了业务本质 —— 只强调 “技术便利”,没解决 “业务痛点”;只谈 “概念”,没算清 “价值”。​


未来,AI 问数要想重新赢得老板们的认可,不用去和新技术 “抢风头”,也不用刻意营造 “高大上” 的定位,而是要扎根业务:帮财务部门减少数据整理时间,帮运营部门统一分析口径,帮业务部门快速拿到能用的数据分析结果。​


当 AI 问数能让老板们清晰看到 “每月帮公司节省 X 万元成本”“助力业务部门提升 Y% 的决策效率” 时,不用过多推销,它自然会成为企业用数的 “刚需工具”。毕竟,对老板们来说,能真正解决问题、创造价值的技术,永远不会被淘汰。

 

上一篇:古德哈特定律再现!AI偏好优化更爱‘花架子’而非真本事

下一篇:AI总在胡说八道?OpenAI重磅论文揭示大模型幻觉真相!

  • 分享:
龙石数据
咨询电话: 0512-87811036,18013092598
联系我们
商务联系微信

商务联系微信

0512-87811036,

18013092598

咨询电话