 
								
								 
									
									标题:Scaling LLM Multi-turn RL with End-to-end Summarization-based Context Management 日期:2025-10-08 机构:ByteDance Seed, Stanford University, Carnegie Mellon University 链接:http://arxiv.org/pdf/2510.06727v1 一句话总结:本文提出了SUPO强化学习框架,通过训练大型语言模型生成摘要来管理上下文,使其能够解决超出固定上下文限制的复杂长程任务。 大语言模型的记忆限制:复杂多步任务的瓶颈 大语言模型(LLM)已展现出作为通用问题解决器的巨大潜力。当通过强化学习(RL)进行训练时,这些模型可以转变为能够处理需要与外部工具交互的复杂多步任务的智能体,例如数学推理、编程和深度网络研究。这些进展预示着一个未来:自主LLM智能体能够处理日益多样化和具有挑战性的问题。 然而,一个根本性的挑战阻碍了这一进展:LLM有限的上下文窗口。对于长周期任务,智能体可能需要执行数十次甚至数百次工具调用,导致累积的提示、行动和观察历史迅速增长。这种不受控制的上下文增长给RL训练带来了几个关键难题: 指令遵循能力退化: 经验证据表明,当上下文变得过长时,LLM的推理和准确遵循指令的能力会下降。这使得智能体在长周期场景中难以生成成功的行动序列。 过高的轨迹生成成本: RL训练依赖于生成大量"轨迹"或交互序列。更长的上下文导致推理时间变慢,使得轨迹生成过程成为训练流程中的主要瓶颈,并显著增加计算成本。 严格的上下文长度限制: 最重要的是,底层LLM的固定上下文长度对RL训练的范围施加了硬性限制。这阻止了智能体尝试那些解决方案所需交互步骤超过单个上下文窗口容量的任务。 总之,这些限制构成了一个显著的可扩展性障碍。如果没有明确的管理上下文机制,将很难训练LLM智能体在极其需要它们的长周期环境中有效运作。 一种新颖方法:利用AI生成摘要管理上下文 为了克服上下文长度瓶颈,研究人员提出了一种新颖方法:基于摘要的上下文管理。其核心思想是通过定期将智能体的交互历史压缩成简洁的AI生成摘要,来防止上下文无限增长。 智能体在达到特定上下文长度阈值时,不是简单地拼接每个新的行动和观察,而是被提示去总结其迄今为止的历程。该摘要随后取代冗长的历史,形成任务下一阶段新的紧凑起点。因此,智能体的工作上下文被重置,包含初始任务提示和所有过去交互的任务相关摘要。此过程如图1所示。 关键在于,该摘要并非使用固定的、基于规则的模板创建。它是由LLM智能体自身作为其决策过程的一部分生成的。这意味着可以通过RL训练智能体,使其学会保留哪些关键信息、如何抽象复杂细节以及可以安全丢弃哪些无关信息。通过联合优化智能体的行动及其摘要策略,该方法使模型能够维持一个紧凑但信息量丰富的历史表征,从而将其推理能力扩展到远超固定上下文窗口的范围。 介绍SUPO:一个支持端到端RL与摘要的框架 基于这一见解,该研究引入了一个原则性框架,将摘要直接集成到RL训练循环中。这是通过将用于多轮工具使用的标准马尔可夫决策过程(MDP)重新表述为摘要增强的MDP(记为)来实现的。 在LLM智能体的标准MDP中,任何步骤的状态通常是所有先前提示、行动和观察的拼接。随着智能体行动,状态单调增长:。然而,在摘要增强的MDP中,状态转换被修改。智能体仍然将其行动和观察附加到当前状态。但如果生成的上下文长度超过预定义阈值,则会触发摘要步骤。模型被提示生成摘要,下一个状态变为仅包含初始提示和新摘要的压缩表征。状态转换由以下规则定义: 若且若且若 这里,是一个特殊指令,提示智能体总结其当前上下文。这种表述(如图1下半部分所示)允许智能体的工作上下文长度保持有界,同时仍保留长历史中的基本信息。 为了将该框架付诸实践,论文引入了摘要增强的策略优化(SUPO),这是一种可扩展的RL算法,旨在以端到端的方式联合优化工具使用行为和摘要策略。 SUPO如何工作:联合学习行动与摘要 SUPO是一种策略梯度算法,使LLM智能体能够学习如何行动以及何时总结、总结什么。其设计基于一个使训练可行且高效的关键理论结果。 分解的策略梯度 SUPO的基石是一种新颖的策略梯度公式(定理3.2)。它证明了一个可能涉及多个摘要步骤的整个长周期轨迹的策略梯度,可以分解为几个较短"子轨迹"的梯度之和。每个子轨迹以对过去的摘要(或初始提示)开始,以智能体为当前工作片段生成新摘要结束。 这种分解是强大的,因为它允许对现有的、为标准的非摘要轨迹优化的RL训练基础设施进行最小修改即可使用。一个单一的、复杂的、带摘要的轨迹可以被视为一批较小的、独立的轨迹,从而大大简化了实现。 关键算法组件 SUPO基于此基础,通过几个关键设计细节来稳定训练并促进有效学习: 轨迹管理: 在训练期间,每个长轨迹在摘要点被分割成多个完整的轨迹。这直接与分解的策略梯度定理对齐,并允许高效处理。 组相对优势估计: 为了计算优势(衡量某个行动比平均行动好多少的指标),SUPO将整个轨迹的最终奖励分摊到其所有子轨迹中。然后,每个标记的优势是相对于同一批次中其他轨迹计算的。这种简单而有效的方法,表示为,被发现比更复杂的替代方法更有效。 超长掩码: 这是长周期任务的关键机制。训练目标会掩码掉任何未能在最大步数()或最大摘要次数()内产生最终答案的轨迹的梯度。没有这个机制,模型会因尝试长但最终失败的任务而受到惩罚,导致其抑制摘要并完全避免长轨迹。此掩码鼓励智能体探索和学习针对真正困难问题的有效摘要策略。 上下文长度的精细控制: 为防止非常长的观察将上下文远远推过摘要阈值,SUPO在生成摘要前丢弃最后的行动-观察对。这确保用于摘要的上下文长度保持在严格控制的范围内。 实践检验:SUPO在编程和网络搜索中的表现 SUPO在两个具有挑战性的多轮工具使用环境中进行了评估:CodeGym(一个需要迭代函数调用来解决编程问题的合成环境)和BrowseComp-Plus(一项要求高的网络搜索任务)。 表1所示的结果证明了SUPO的有效性。在BrowseComp-Plus上,SUPO实现了 53.0% 的最终成功率,比基线GRPO算法绝对提升了 +14.0% ,即使使用了相同的64K工作上下文长度。在CodeGym上,SUPO能够实现比使用32K上下文的基线更高的成功率(+3.2%),而SUPO本身仅使用 4K工作上下文 结合最多7次摘要步骤(等效上下文为32K)。这凸显了SUPO在显著降低轨迹生成期间计算需求的同时实现强大性能的能力。 图2中的训练和验证曲线表明SUPO能够稳定有效地学习。对训练动态的进一步分析揭示了关键见解: 增加的工具使用:图4显示,SUPO激励智能体使用其工具的频率比基线高出最多3倍,这对于收集足够信息以解决复杂问题至关重要。 有效的摘要学习: 如图3所示,智能体很快学会触发摘要,更重要的是,这些带摘要的轨迹的成功率在训练期间持续增加。这证实了模型正在联合学习有效行动和摘要。 高质量摘要:表2所示的定性分析揭示了摘要质量的显著差异。在训练前,智能体的摘要泛泛而谈,常常遗漏关键信息。经过SUPO训练后,智能体学会保留精确、可操作的细节——例如在CodeGym中它正在迭代的确切索引,或在BrowseComp-Plus中关键证据的具体文档ID——这些对于后续步骤至关重要。 消融研究也证实,超长掩码和所选的优势估计策略对于实现这些最先进的结果至关重要。 超越限制:扩展训练后智能体能力 也许最令人兴奋的结果是SUPO将其学到的摘要技能泛化到训练期间未见条件之外的能力。研究人员提出了一个问题:一个在最多轮摘要条件下训练的模型,能否在测试时扩展到处理更多轮摘要? 假设是,如果智能体学会了一种真正可泛化的摘要策略,它应该能够重复应用该策略来解决需要更长历史的更复杂问题。为了测试这一点,在BrowseComp-Plus上以最多次摘要训练的模型,在测试时以允许增加的摘要轮数进行评估。 图5所示的结果非常显著。使用SUPO训练的模型的准确率不仅超过了所有基线,而且随着测试时允许的摘要轮数增加而持续增长,达到了 60.0% 的峰值准确率。这表明SUPO所做的不仅仅是管理内存限制;它赋予了智能体一种稳健、可扩展的推理能力。通过学习将其经验提炼成有效的摘要,智能体可以动态扩展其问题解决范围,应对远比其明确训练过的任务更复杂的挑战。这一卓越发现展示了基于摘要的上下文管理作为一种原则性强大的方法,用于构建下一代智能LLM智能体。 来源(公众号):AI SIgnal 前瞻
2025-10-31 17:15 5
热门文章